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SUMMARY

We study if the multilevel algorithm introduced in Debussche et al. (Theor. Comput. Fluid Dynam., 7, 279±315
(1995)) and Dubois et al. (J. Sci. Comp., 8, 167±194 (1993)) for the 2D Navier±Stokes equations with periodic
boundary conditions and spectral discretization can be generalized to more general boundary conditions and to
®nite elements. We ®rst show that a direct generalization, as in Calgaro et al. (Appl. Numer. Math., 21, 1±40
(1997)), for the Burgers equation, would not be very ef®cient. We then propose a new approach where the
domain of integration is decomposed in subdomains. This enables us to de®ne localized small-scale components
and we show that, in this context, there is a good separation of scales. We conclude that all the ingredients
necessary for the implementation of the multilevel algorithm are present. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The integration of evolutionary Navier±Stokes equations for a high Reynolds number remains a

dif®cult problem despite the signi®cant increase in computing power. It is well known that for high

Reynolds numbers, these equations have a very large number of degrees of freedom (see Reference 1

for an estimate based on physical arguments and Reference 2 for a mathematical point of view).

A classical way to avoid this problem is to average the equations and to model the resulting

Reynolds stress tensor. The well-known k-e model of turbulence for instance is obtained in this way.

Similar ideas are used to derive models for large eddy simulation, such as the subgrid models. In all

these theories, physical arguments are used in a crucial way when modelling the averaged non-linear

term.

This work is part of a programme whose aim is to integrate Navier±Stokes equations for high

Reynolds number. As in turbulence models, the idea is to simulate only the evolution of the large

scales. The effect of the small scales cannot be neglected and the way it is taken into account is based

on mathematical arguments.

In previous works3,4 a multilevel scheme was proposed for the two dimensional Navier±Stokes

equations on a periodic rectangle (Fourier discretization was used). In this context, once a cut-off

wavelength is given, the unknown u splits naturally into two components; y representing the large

scales and z representing the small scales. The equation satis®ed by y contains terms depending on z,
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the so-called interaction terms that play the same role as the Reynolds stress tensor. Based on a

detailed analysis of the behaviour of these terms on a turbulent solution computed by direct

simulation, it was derived that, although they are not negligible, the interaction terms vary slowly

and their variations over suf®ciently long intervals of time could be neglected. An algorithm

was developed in which these terms were frozen and a totally self-adaptative procedure was

obtained.

However, because Fourier discretization was used, these works are restricted to homogeneous

turbulence. When more general boundary conditions are considered, ®nite elements can be used and

it seems natural to use the hierarchical decomposition of the ®nite element space to de®ne the small

and large scale components. Theoretical and numerical studies5±7 have indicated that, indeed, with

this de®nition, the scales do separate, and, as expected, the interaction terms are small but not

negligible.

Recently,8 the idea used for the simulation of homogeneous turbulence to freeze the interaction

terms has been successfully implemented in the case of a ®nite element discretization of the two

dimensional Burgers equations; hierarchical ®nite elements were used.

In this work, we study how this strategy can be applied to the two-dimensional Navier±Stokes

equations with general boundary conditions. Several questions have to be answered before

implementing a multilevel algorithm as in the above-mentioned work. Do the interaction terms vary

slowly in this case? What is the effect of the pressure? In References 3, 4 or 8, only the velocity

appears in the equations. Also in Reference 8, the practical estimate of the time during which the

interaction terms are frozen was not totally satisfactory. It depends on the variations of these terms,

which is very expensive to compute. The trick is to ®nd another simple term that behaves similarly

and whose variations are correlated to the variations of the interaction terms. A very good correlation

was found in the periodic case when the time derivatives of the small scale components was used.

However, the correlation was rather poor in Reference 8.

We ®rst present the basic numerical method used to solve the Navier±Stokes equations. To avoid

problems with the pressure we have considered a penalty method, offering the possibility of

eliminating it. A mixed formulation using the 4P17P1Ðalso called P1 iso P27P1Ðelement is

chosen. This is motivated by the possibility of easily de®ning a hierarchical basis and the ability of

this element to compute non-stationary ¯ows.

We have chosen the regularized driven cavity at Reynolds number 5000 as our test problem and we

show that the method gives good results.

In section 3, we recall the de®nition of hierarchical basis and write the equations satis®ed by the

small and large scale components. Section 4 contains our analysis. First, we generalize the algorithm

used in References 4 and 8 so that it can be implemented in our case. Then, we give a relation

between the time during which the interaction terms can be frozen and their variations. Thus, by

taking the values of these variations for the solution computed in section 1, we are able to give

estimates of this time. It appears that, even though the penalty method is used, the pressure has a

rather bad effect. The interaction terms containing small-scale components of the pressure cannot be

frozen for more than one or two time steps.

To overcome this problem, we propose a new approach in which the local nature of the ®nite

element discretization is used and local small scale components are considered. The domain of

computation is decomposed in subdomains providing a natural de®nition of localized small scales.

We show that there is a very good separation of scales and that the interaction terms can be frozen on

long intervals of time but locally. Also we have been able to exhibit a very good correlation between

the variations of the different terms.
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It is easy to generalize the multilevel algorithm so that it includes the notion of local small scales.

Moreover, this can be coupled with parallel computation techniques. Thus, it seems that a very

ef®cient procedure can be derived.

In a future work, we will implement such an algorithm coupled with domain decomposition and

parallel computation. Also we will consider more physical ¯ows and higher Reynolds numbers. We

think that the conclusion of this work will still be valid.

2. THE EQUATIONS AND THEIR DISCRETE FORMULATION

2.1. The continuous problem

We consider the motion of a two dimensional incompressible viscous ¯uid in a domain O. In non-

dimensional form, the equations satis®ed by the velocity u(x, t) and the pressure p(x, t), x 2 O, t> 0

are

@u

@t
ÿ 1

Re
Du� �u � H�u� Hp � f ; H � u � 0; �1�

in O� R�. Here Re denotes the Reynolds number:

Re � UL=n;

U has being a characteristic velocity of the ¯ow, L a characteristic length and n the kinematic

viscosity. Also, f represents the external forcing. Equations (1) are supplemented with an initial

condition

u�x; 0� � u0�x�; x 2 O:

Our test problem is the regularized driven cavity, thus O is the unit square [0, 1]2 and the boundary

conditions are

u�x; t� � g�x�; x 2 @O; t > 0; �2�
where g is 0 on @O except when x2� 1 and

g�x1; 1� � �1ÿ �2x1 ÿ 1�2�a
0

� �
; x1 2 �0; 1�:

To avoid the problem due to the incompressibility condition, we use the penalty method.9,10 We

introduce a small parameter e> 0 and approximate (1) by the following system

@ue

@t
ÿ 1

Re
Due � �ue � H�ue � 1

2
�H � ue�ue � Hpe � f ;

H � ue � epe � 0;
�3�

in O� R�. The initial and boundary conditions are unchanged. The term 1
2
�H � ue�ue has been added

so that (2) de®nes a well-posed problem, it does not change the qualitative behaviour of the solution.

It has been shown10,11 that the following estimate holds:

jue ÿ ujH1�O� � jpe ÿ pjL2�O�4Ke;

where K is a positive constant. Finally, we introduce the variational formulation of (3):
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Find �ue�t�; pe�t�� 2 �H1
g�O��2 � L2�O� such that

@ue

@t
; v

� �
� 1

Re
��ue; v�� � b�ue; ue; v� ÿ � pe;H � ue� � � f ; v�;

�H � ue; q� � e� pe; q� � 0

�4�

for any �v; q� 2 �H1
0 �O��2 � L2�O�,

where ( � , � ) is the usual L2(O) inner product, (( � , � )) is the bilinear form associated to the Laplace

operator:

��u; v�� � �Hu;Hv�; u; v 2 H1�O�;
b is the trilinear form de®ned by

b�u; v;w� � ��u � H�v;w� � 1
2
��H � u�v;w�; u; v;w 2 H1�O�;

and H1
g �O� (resp. H1

0 �O�) is the subspace of H1(O) consisting of functions satisfying (2) (resp.

vanishing on @O). We will use also the notation j � j for the L2(O) norm and k�k for the norm

associated to (( � , � )). From now on, e is a ®xed parameter and we omit to write the index e for the

velocity and pressure.

2.2. The discrete equations

We use a ®nite element discretization of our problem. As is well known, it is necessary to

approximate the velocity and the pressure by a couple of spaces of ®nite elements satisfying the

Babuska±Brezzi `̀ Inf±Sup'' condition. Elements with a piecewise constant pressure (e.g. the P27P0

element where the velocity is a second degree polynomial on each triangle or the 4P17P0 element

where it is piecewise linear on a ®ner triangulation) have been widely used (see Reference 7 and its

references). They are easy to implement and lead to very sparse matrix. However, it seems that they

are well suited for computations of stationary ¯ow but, when they are used for the evolutionary

Navier±Stokes, oscillations appear. A nice alternative, which overcomes this problem, is to choose a

discontinuous piecewise linear element for the pressure and bubble type elements for the velocity.

We cannot choose such an element, because our aim is to use a hierarchical decomposition of the

computed solution and hierarchical formulations are not simple to write in this case. We have chosen

the 4P17P1 (or P1 iso P27P1) element where the pressure is piecewise linear and the velocity is

also piecewise linear but on a ®ner grid. This element satis®es the `̀ Inf±Sup'' condition.12

To describe more precisely the element, and to set some notations used in the next section, we

introduce a family of nested meshes

t0 �t1 � � � � �td;

constructed from an initial ®nite element mesh t0 by subdividing each triangle into four similar

subtriangles (see Figure 1 where three nested meshes (d� 2) are represented). For k � 0; . . . d, Vk is

the ®nite element space of piecewise linear functions associated to tk. On a given level k 5 1, the

velocity is sought in vg;k the subspace of Vk � Vk of functions satisfying the discrete equivalent of

(4), the test functions are taken in v0;k the subspace of Vk � Vk of functions vanishing on @O.

The computed pressure is taken in qk � Vkÿ1, just as the test functions for the penalized

incompressibility condition. We obtain the formulation:
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Find (uk�t�; pk�t�) in vg;k � qk such that

@uk

@t
; vk

� �
� 1

Re
��uk; vk�� � b�uk; uk; vk� ÿ � pk;H � vk� � �f ; vk�;

�H � uk; qk� � e� pk; qk� � 0;

�5�

for any (vk , qk) in v0;k � qk .

It only remains to discretize in time, and we have used an Euler scheme; the linear part is treated

implicitly and the non-linear part explicitly. Higher order schemes could be used.

It is convenient to write (5) in matrix form. Let Sk be the set of nodes of tk and

nk � card Sk; n0;k � card�Sk \ O
� �:

The canonicalÐor nodalÐbasis of Vk (resp. V0;k) consists of the functions Fk;i; i � 1; . . . ; nk (resp.

i � 1; . . . ; n0;k) whose value is 1 at the node i and 0 at the others. The canonical basis of Qk � Vkÿ1 is

�xk;i�i�1;...;mk
with mk � nkÿ1 and xk;i � Fkÿ1;i. We de®ne the nodal matrices

�aÿÿk�i;j �
1

Re
��Fk;i;Fk;j��; 14 i; j 4 n0;k

�mÿÿk�i;j �
1

Dt
�Fk;i;Fk;j�; 14 i; j 4 n0;k

�bl;k�i;j � ÿ xk;i;
@Fk;j

@xl

� �
; 14 i4mk; 14 j 4 n0;k ; l � 1; 2:

�ck�i;j � �xk;i; xkj�; 14 i; j 4mk

and the block matrices

ak � a
ÿÿ

k 0

0 ak

� �
; mk � m

ÿÿ
k 0

0 m
ÿÿ

k

� �
; bk � �b1;k;b2;k�

and the vectors

Un�1
k � Un�1

1;k

Un�1
2;k

 !
; Fk �

F1;k

F2;k

� �
; bk�U n

k � �
b1;k�Un

k �
b2;k�Un

k �
� �

Figure 1. Hierarchical triangulation of domain O: t0 �t1 �t2
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of v0;k associated to the new velocity, the forcing term and the explicit non-linear term and the vector

Pn�1
k in Qk associated to the pressure. Then we have the matrix problem

mk �ak bT
k

bk ÿeck

� �
U n�1

k

Pn�1
k

� �
� Fk �mkUn

k ÿ bk�Un
k �

0

� �
: �6�

The variable Pn�1
k can be eliminated, obtaining

mk �ak �
1

e
bT

k c
ÿ1
k bk

�
U n�1

k � Fk ÿ bk�Un
k � �mkUn

k :

�
�7�

We avoid the computation of cÿ1
k by replacing ck by a diagonal matrix obtained thanks to a mass-

lumping technique.

The matrix on the left-hand side of (7) is very ill-conditioned and iterative methods are not well

suited for the resolution of (7), so we have used a direct solver. Below we present the result of our

Figure 2. Regularized driven cavity at Re� 5000
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computations for our test problem. The Reynolds number is 5000 and the parameter e is 10ÿ3. Also,

we have taken Dt � 2� 10ÿ3, nk� 652. As shown in Figure 2, it gives good results.

3. THE HIERARCHICAL DECOMPOSITION

To split the solution into its small and large scale components, we use the hierarchical ®nite element

basis. This concept has been introduced by Zienciewicz et al.13 and has been developed by

Yserentant14 for elliptic linear problems. It has been shown to be useful for multilevel schemes on a

previous work on the Burgers equation.8 Let k 5 1, obviously we have

Vkÿ1 � Vk;

we split

Vk � Vkÿ1 �Wk

and recursively

Vd � V0 �W1 � � � � �Wd :

The hierarchical basis of Wk consists of the ck;j � Fk;j where j � nkÿ1 � 1; . . . ; nk is a nodal point of

tkntkÿ1. On Vkÿ1 we take the nodal basis at level k7 1:

ck;j � Fkÿ1;j; j � 1; . . . ; nkÿ1:

If uk is in Vk, its decomposition is

uk � ykÿ1 � zk ; ykÿ1 2 Vkÿ1; zk 2 Wk

and we have

ykÿ1 �
Pnkÿ1

i�1

ykÿ1;ick;i; zk �
Pnk

i�nkÿ1�1

zk;ick;i;

with

ykÿ1;i � uk�Ai�; Ai 2 Skÿ1;

zk;i � uk�Bi� ÿ 1
2
�uk�Ai1� � uk�Ai2��; Bi 2 SknSkÿ1;

where Bi is the midpoint of the edge [Ai1, Ai2]. From Taylor's formula, we expect zk to be small

compared with ykÿ1. However, and it will be made clear in the next section, this is not always true,

especially if the solution has strong gradient. With obvious notation, we de®ne a decomposition of

vg;k

vg;k �vg;kÿ1 �wg;k

and of vk, v0;k . The space qk is split into

qk � qkÿ1 �rk

and the unknowns are written as

uk � ykÿ1 � zk; pk � pkÿ1 � pk :

Then the hierarchical formulation of (5) is
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Find (ykÿ1; pkÿ1) in vg;kÿ1 � qkÿ1 and (zk; pk) in wg;k �rk such that

@ykÿ1

@t
; ~ykÿ1

� �
� 1

Re
�� ykÿ1; ~ykÿ1�� � b� ykÿ1; ykÿ1; ~ykÿ1�

ÿ� pkÿ1; div ~ykÿ1� � L�zk; pk ; ~ykÿ1� � bint� ykÿ1; zk ; ~ykÿ1� � � f ; ~ykÿ1�;
�div ykÿ1 � div zk ; ~pkÿ1� � e� pkÿ1 � pk; ~pkÿ1� � 0

8>>>><>>>>: �8�

for any (~ykÿ1; ~pkÿ1) in v0;kÿ1 � qkÿ1. And

@zk

@t
; ~zk

� �
� 1

Re
��zk ; ~zk�� � b�zk; zk; ~zk�

ÿ�pk ; div ~zk� � L� ykÿ1; pkÿ1; ~zk� � bint�zk; ykÿ1; ~zk� � � f ; ~zk�;
�div ykÿ1 � div zk; ~pk� � e� pkÿ1 � pk; ~pk� � 0;

8>>>><>>>>: �9�

for any �~zk ; ~pk� 2w0;k �rk .

The function bint represents the non-linear interaction between the large and small scale

components, it is de®ned by

bint�u; v;w� � b�u; v;w� � b�v; u;w� � b�v; v;w�
and L is the linear interaction term

L�u; p;w� � @u

@t
;w

� �
� 1

Re
��u;w�� ÿ � p; div w�:

More generally, the unknown could be split according to the sum Vk � V0 �W1 � � � � �Wk as

uk � y0 � z1 � � � � � zk;

pk � p0 � p1 � � � � � pk :

But then complicated terms appear in (8) and the other equations and it is not clear how our approach

can be adapted to this case. Therefore, we restrict our attention to the splitting described above. When

the hierarchical basis are taken on v0;k and qk, the matrix ak decomposes naturally in the block form

ak �
a�k�cc a�k�cf

a�k�fc a�k�ff

 !
:

The indices c and f are for coarse and ®ne. Of course, we have

a�k�cc �akÿ1:

We have similar decompositions for bk, ck and mk. Also the unknown vectors split into

Uk � Ykÿ1 � Zkÿ1; Pk � Pkÿ1 �Pk

and for the forcing and non-linear term we have

b�Uk� � bc�Uk� � bf �Uk�;
bint�Y n

kÿ1; Zn
k � � bint;c�Y n

kÿ1; Zn
k � � bint;f �Y n

kÿ1; Zn
k �; �10�

Fk � Fkÿ1 � Gk :
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With these notations, the matrix form of the time discretization of (8) is

�mk
cc �ak

cc�Y n�1
kÿ1 � �mk

cf �ak
cf �Zn�1

k � tbk
ccPn�1

kÿ1 � tbk
fcP

n�1
k

� Fkÿ1 �mk
ccY n

kÿ1 �mk
cf Zn

k ÿ bc�Y n
kÿ1� ÿ bint;c�Y n

kÿ1; Zn
k �;

bk
ccY n�1

kÿ1 �bk
cf Zn�1

k ÿ eck
ccPn�1

kÿ1 ÿ eck
cf P

n�1
k � 0:

8>>><>>>: �11�

A similar form holds for (9). In (11), the unknown Pn�1
kÿ1 can be eliminated yielding a similar form as

(7):

mk
cc �ak

cc �
1

e
tbk

cc�ck
cc�ÿ1bk

cc

� �
Y n�1

kÿ1 � Fkÿ1 ÿ bc�Y n
kÿ1� �mk

ccY n
kÿ1

ÿbint;c�Y n
kÿ1; Zn

k � ÿ �mk
cf �ak

cf �Zn�1
k

�mk
cf Zn

k ÿ tbk
fcP

n�1
k ÿ 1

e
tbk

cc�ck
cc�ÿ1bk

cf Zn�1
k � tbk

cc�ck
cc�ÿ1ck

cf P
n�1
k : �12�

Note that if the underlined terms are omitted in (12), we obtain exactly the discrete formulation on the

level k7 1. (This corresponds to omitting the interaction term in (8).) Thus they appear as a

correction; they are comparable to the Reynolds's stress tensor appearing in turbulence modelling.

Our aim is to take those corrections into account without solving (9). We want to use similar ideas as

Reference 4 where Fourier discretization on the 2D Navier±Stokes equations with periodic boundary

conditions was used and as in Reference 8, where the 2D Burgers equations were discretized with

®nite elements. The key observation in these works was that the underlined interaction terms vary

slowly and can be frozen on suf®ciently long interval of time. A multilevel strategy based on V cycles

was used.

This methodology has shown to be very effective for the 2D Navier±Stokes equations with

periodic boundary conditions and has been generalized to 3D ¯ows.

It has also been implemented successfully on the Burgers equations. However, in this case the

length of the interval during which the interaction terms can be frozen was shorter and the way they

were estimated was not totally satisfactory.

In the next section we show that, in our case, these problems can be overcome.

4. ANALYSIS OF THE INTERACTION TERMS

In this section, we generalize the multilevel algorithm used in Reference 8 to the Navier±Stokes

equations discretized with ®nite elements. As mentioned above, the key is that the interaction terms

vary slowly. We give a relation between the length of the intervals of time during which these terms

can be frozen and their variations. Then we use a solution computed by the method described in

section 2 to have an estimate of these lengths of time. It appears that the interaction terms can indeed

be frozen and the algorithm can work. However, the length of the intervals are not very large and we

propose a new approach based on the decomposition of the domain, it allows us to de®ne naturally

localized small scale components and we show that with this new decomposition the scales separate

much better and the interaction terms can be frozen on long interval of time.

4.1. A two-level algorithm

The algorithm used in Reference 8 can easily be adapted to the case of a two level splitting of the

unknowns. For clarity, we describe it on the semidiscretized equations (8), (9).
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Starting at time t0 with known ykÿ1�t0� and zk�t0�, we determine two times tNL�t0� and tL�t0�. We

also have a ®xed time t0 (which in practical is one or two time steps). The nonlinear interaction terms

bint will be kept at its value at time t0 during the whole interval �t0; t0 � tNL�t0��. The linear terms are

frozen on the smaller interval �t0; t1 ÿ t0�, where t1 � t0 � tL�t0� � t0. In other words, on �t0; t1 ÿ t0�,
we approximate ykÿ1; pkÿ1 by the solutions �ykÿ1; �pkÿ1 of

@�ykÿ1

@t
; ~ykÿ1

� �
� 1

Re
���ykÿ1; ~ykÿ1�� � b��ykÿ1; �ykÿ1; ~ykÿ1� ÿ ��pkÿ1; div ~ykÿ1�

� �f ; ~ykÿ1� ÿ L�zk�t0�; pk�t0�; ~ykÿ1� ÿ bint� ykÿ1�t0�; zk�t0�; ~ykÿ1�; �13�
�div �ykÿ1 � e�pkÿ1; ~pkÿ1� � ÿ�div zk�t0� � epk�t0�; ~pkÿ1�; �14�

for any ~ykÿ1; ~pkÿ1 in v0;kÿ1 � qkÿ1. Then we iterate the full system (5) on the interval �t1 ÿ t0; t1�
with initial data

uk�t1 ÿ t0� � �ykÿ1�t1 ÿ t0� � zk�t0� �15�
and only the non-linear interaction terms being frozen, i.e. we approximate uk, pk by �uk , �pk the

solutions of

@�uk

@t
; vk

� �
� 1

Re
���uk ; vk�� ÿ � pk; div vk� � b��ykÿ1; �ykÿ1; vk�

� � f ; vk� ÿ bint� ykÿ1�t0�; zk�t0�; vk�;
�div �uk ; qk� � e� pk ; qk� � O

�16�

for any (vk; qk) in v0;k � qk on the interval �t1 ÿ t0; t1� with initial data (15).

In (16), �ykÿ1 is the large-scale component of �ukÿ1. Thus we have the values of �ykÿ1�t1�; �zk�t1� as

well as of all the linear interaction terms.

We determine a new tL�t1� and iterate this on the interval [t1, t2] with t2 � t1 � t0 � tL�t1� � t0, i.e.

we simulate (13), (14) on �t1; t2 ÿ t0� with only the linear interaction terms L�zk�t0�; pk�t0�; ~ykÿ1�,
(div zk�t0� � epk�t0�; ~pkÿ1) being changed into L�zk�t1�; ykÿ1�t1�; ~ykÿ1�, (div zk�t1� � epk�t1�; ~pkÿ1). The

term bint is still evaluated at time t0. Then on �t2 ÿ t0; t2�, we simulate (16) with initial data

�uk�t2 ÿ t0� � �ykÿ1�t2 ÿ t0� � zk�t1�:
We go on until time t0 � tNL�t0� is reached. Then all the interaction terms are reevaluated and a new

tNL is determined.

4.2. Estimate of tL and tNL

This algorithm will be effective only if the times tL and tNL are suf®ciently large. We derive a

relation between tL, tNL and the variations of the interaction terms so that we will be able to estimate

them. We still restrict our attention to the semidiscretized equations, the results being similar for the

fully discretized equations.

Let ey � ykÿ1 ÿ �ykÿ1, epy
� pkÿ1 ÿ �pkÿ1; substracting (13), (14) to (8) and taking ey, epy

as test

functions, we obtain on �ti; ti � tL�ti���:
1

2

@jeyj2
@t
� 1

Re
keyk2 ÿ �epy

; div ey� � ÿb� ykÿ1; ykÿ1; ey� � b��ykÿ1; �ykÿ1; ey�
ÿ L�zk; pk; ey� � L�zk�ti�; pk�ti�; ey� ÿ bint� ykÿ1; zk; ey� � bint� ykÿ1�t0�; zk�t0�; ey�;
�div ey; epy

� � ÿejepy
j2 ÿ e�pk ÿ pk�ti�; ey� ÿ �div zk ÿ div zk�ti�; epy

�:
�17�
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We obtain after easy computations:

1

2

@jeyj2
@t
� 1

Re
keyk2 �

e
2
jepy
j2 4 jb� ykÿ1; ykÿ1; ey� ÿ b��ykÿ1; �ykÿ1; ey�j � jeyj2

� 1
2
jbint� ykÿ1; zk; ~ykÿ1� ÿ bint� ykÿ1�t0�; zk�t0�; ~ykÿ1�j2

� 1
2
jL�zk; pk ~ykÿ1� ÿ L�zk�ti�; pk�ti�; ~ykÿ1�j2 � ej�pk ÿ pk�ti�; ~pkÿ1�j2

� 1

e
j�div zk ÿ div zk�ti�; pkÿ1�j2: �18�

We have used the notation bint� ykÿ1; ykÿ1; ~ykÿ1� to denote the orthogonal projection of the non-linear

interaction term on vkÿ1 and L�zk; pk ; ~ykÿ1�, (pk ; ~pkÿ1) or (div zk; ~pkÿ1) have to be interpreted

similarly.

The ®rst term on the right-hand side of (18) is the same term that would appear when comparing

ykÿ1 to the true solution of (5). The four last terms are introduced by our algorithm and represent

additional discretization errors.

Let Z> 0 be a small number that would be ®xed during the whole computation with the algorithm

described above. This parameter is the maximum value of the perturbations that one wants to

introduce. Over the interval �t0; t0 � tNL�t0��, the non-linear interaction term is frozen. The

perturbation induced is represented by the third term and at the time t0 � tNL�t0� is responsible of

an accumulated perturbation which can be measured by

1

2

�t0�tNL�t0�

t0

jbint� ykÿ1; zk ; ~ykÿ1� ÿ bint� ykÿ1�t0�; zk�t0�; ~ykÿ1�j2 dt

4
t3

NL

6
sup

�t0;t0�tNL�t0��

@

@t
bint� ykÿ1; zk ; ~ykÿ1�

���� ����2: �19�

Similarly, on each interval �ti; ti � tL�ti��, we have a perturbation from the linear interaction term

which is estimated by

tL�ti�3
3

1

2
sup

�ti;ti�tL�ti��

@

@t
L�zk; pk; ~ykÿ1�

���� ����2
 

� e sup
�ti;ti�tL�ti��

@

@t
�pk; ~pkÿ1�

���� ����2� 1

e
sup

�ti;ti�tL�ti��

@

@t
�div zk; ~pkÿ1�

���� ����2�: �20�

It seems natural to require that each of the right-hand sides of (19) and (20) is less than Z2 (recall they

represent components of square of the error). These estimates can be derived in a heuristic way as

follows. In (18), we consider that each terms acts separately on the error and that the error will be the

sum of e1, e2, e3 such that

1

2

d

dt
je1j2 �

1

Re
ke1k2 4 je1j2 � jb� ykÿ1; ykÿ1; e1� ÿ b��ykÿ1; �ykÿ1; e1�j;

1

2

d

dt
je2j2 �

1

Re
ke2k2 4 je2j2 �

1

2
jbint� ykÿ1; zk; ~ykÿ1; � ÿ bint� ykÿ1�t0�; zk�t0�; ~ykÿ1�j2;

1

2

d

dt
je3j2 �

1

Re
ke3k2 4 je3j2 �

1

2
jL�zk; pk ; ~ykÿ1� ÿ L�zk�ti�; pk�ti�; ~ykÿ1�j2;

� ej�pk ÿ pk�ti�; ~pkÿ1�j2 �
1

e
j�div zk ÿ div zk�ti�; ~pkÿ1�j2:
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We do not want to consider e1, since this component of the error is not due to our algorithm; e2 and e3

are easily estimated thanks to a Gronwall lemma and, neglecting the exponential term, we obtain

(19), (20).

Also, when simulating the full system on each �ti ÿ t0; ti�, we have an error in the initial data which

is

jzk�ti ÿ t0� ÿ zk�tiÿ1�j4tL�ti� sup
�ti;ti�tL�ti��

@zk

@t

���� ����: �21�

We require that this term is also less than Z.

The time t0 is chosen so that this error is smoothed. Note that the small-scale components are

damped very fast and it is legitimate to expect that t0 can be taken to be small. This time t0 can be

interpreted as the time necessary for the small scales to adjust to the large scales.

4.3. A posteriori analysis

We now give estimates of the time tL and tNL by measuring the variations of the interaction terms

on a computed solution.

We concentrate our analysis on three terms

1. j�@zk=@t; ~ykÿ1�j which behaves like j1=Re��zk; ~ykÿ1��j, j�pk; div ~ykÿ1�j, j�pk; ~pkÿ1�j or j@zk=@tj.
2. j�div zk; ~pkÿ1�j since 1=ej@=@t�div zk; ~pkÿ1�j2 is the dominant term in the estimate of tL (see

(20)).

3. The non-linear interaction term jbint� ykÿ1; zk; ~ykÿ1�j.
Let us recall that j � j is the L2(O) norm. During this computation, a term like �@zk=@t; ~ykÿ1� is

represented by its scalar product with the elements of the hierarchical basis of vkÿ1 which are

bi �
@

@t
zk ;Fkÿ1;i

� �
; i � 1; . . . ; nkÿ1:

Let us write

@

@t
zk ; ~ykÿ1

� �
� Pnkÿ1

i�1

aiFkÿ1;i;

then

@

@t
zk;Fkÿ1;i

� �
� Pnkÿ1

j�1

aj�Fkÿ1;j;Fkÿ1;i� � Dt mkÿ1

a1

..

.

ankÿ1

0B@
1CA

0B@
1CA

i

:

Therefore

b1

..

.

bnkÿ1

0B@
1CA � Dtmkÿ1

a1

..

.

ankÿ1

0B@
1CA
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and

@

@t
zk; ~ykÿ1

� ����� ����2 � Pnkÿ1

i;j�1

aiaj�Fkÿ1;i;Fkÿ1;j�

� Dt�a1; . . . ; ankÿ1
�mkÿ1

a1

..

.

ankÿ1

0BB@
1CCA

� �Dt�ÿ1�b1; . . . ; bnkÿ1
�mÿ1

kÿ1

b1

..

.

bnkÿ1

0BB@
1CCA:

The inverse of mkÿ1 is computed by a mass lumping so that the evaluation of the L2(O) norm is

cheap. The other quantities are computed similarly.

The result below are for two splitting, for k� 2 and 3.

4.3.1. Global analysis

On Figure 3, we have the L2(O) norm of �@zk=@t; ~ykÿ1� and of its variation over one time step which

is approximately

Dt
@

@t

@

@t
zk; ~ykÿ1

� ����� ����:
On Figures 4 and 5 the same quantities for j�div zk ; ~pkÿ1�j and jbint� ykÿ1; zk; ~ykÿ1�j. First, comparing

with the top of Figure 3 where the L2(O) norm of �@ykÿ1=@t; ~ykÿ1� is shown, we notice that the

interaction terms are small but not suf®ciently and they cannot be neglected.

Another remark is that in our computation the stationary ¯ow establishes approximately at time

t� 5 and our analysis should consider only times less than 5 since we intend to get information on

non-stationary ¯ows.

Figure 3. Global evolution of @=@t terms
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We choose the parameter Z � Dt � 2�10ÿ3, this is justi®ed by the fact that we have an Euler

scheme of order one in time which produces an error of this order.

From these results, we can take typical values of j@bint� ykÿ1; zk; ~ykÿ1�=@tj, j@�div zk ; ~pkÿ1�=@tj and

j@zk=@tj to be 3� 10ÿ4�Dt�ÿ1, 5� 10ÿ4�Dt�ÿ1 and 5� 10ÿ2. Thus (19), (20) and (21) will be

approximately less than Z2 if

tNL 4 4� 10ÿ2;

tL 4 minf2� 10ÿ3; 2� 10ÿ2g:

This indicates that the linear interaction term can be frozen on a few time steps (which equal

2� 10ÿ3 here) and the non-linear interaction term on about 40 time steps. We can foresee that the

implementation of the algorithm, however, due to the above estimate, would not be very ef®cient.

Figure 4. Global evolution of div terms

Figure 5. Global evolution of non-linear terms
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Thus, we would like to increase these times, especially tL, and we propose a new approach below.

Also, the quantity

sup
�t0;t0�tNL�t0��

@

@t
bint� ykÿ1; zk; ~ykÿ1�

���� ����2
is very expensive to estimate in practice. In Reference 15, it was found that it behaves like other

simple quantities. In the equivalent of (19), it was replaced by

sup
�t0;t0�t�

@zk

@t

���� ����2;
which is very cheap to estimate.

In Reference 4, a similar idea was used, but it was not clear how to justify this approximation in

that case. In our case, we have not been able to ®nd a simple quantity which could be used. We see

below that this problem is overcome when the small scales are localized.

4.3.2. Local analysis

Since we are using ®nite elements, it seems natural to take advantage of the local type of this

discretization. One way to do this is to decompose the domain of integration. We consider the simple

case of a decomposition in four subdomains (Figure 6). Then the small components splits naturally in

four terms, corresponding to a splitting of the basis into four parts, each corresponding to a

subdomain. Also, all the interaction terms split into four components.

This approach could be coupled to multidomain decomposition technics and parallel computation.

With this in mind we imagine a new possibility, which is to freeze the interaction term locally. The

times tL and tNL would depend on the subdomain we consider. It is easy to see that they can be

estimated by the same formula (19)±(21) as in the global case except that the L2(O) norm has to be

replaced by the L2�Oi�; i � 1; . . . ; 4, norm.

On Figures 7±8, 9±10 and 11± 12, we represent the three terms

@

@t
�zk; ~yi

kÿ1�
���� ����

L2�Oi�
; j�div zk; ~yi

kÿ1�jL2�Oi�; jbint� ykÿ1; zk; ~yi
kÿ1�jL2�O�

for each subdomain and we see that their variations are much smaller but not at the same time,

depending on the subdomain we consider. For instance, at time 2, the variations of bint� ykÿ1; zk; ~ykÿ1�
are about 10ÿ5 in domain 1, 3� 10ÿ4 in domain 2, 5� 10ÿ6 in domain 3 and 10ÿ5 in domain 4. If we

use these numbers to estimate tNL in each domain, taking 1
4
Z instead of Z, we estimate that the non-

linear interaction term can be frozen about 150 time steps in domain 1 and 4, 250 time steps in

domain 3 and only 15 time steps in domain 2. At time t� 4, on the contrary, tNL will be larger in

Figure 6. Subdomain decomposition
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Figure 7. Local evolution of �@zk=@t; ~ykÿ1�

Figure 8. Local evolution of variation of �@zk=@t; ~ykÿ1�

Figure 9. Local evolution of �div zk ; ~pkÿ1�
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Figure 10. Local evolution of the variation of �div zk ; ~pkÿ1�

Figure 11. Local evolution of bint

Figure 12. Local evolution of the variation of bint
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domain 4 and smaller in domain 1. We can do similar computation on tL and estimate its value,

depending on the time and on the domain to vary between 1 and 30 time steps.

Thus tL and tNL can be very large when the small scale structures are localized and it seems that

the algorithm described aboveÐwhich can be easily extended to a multidomain computationÐcan be

very effective.

Moreover, there is a clear correlation between the variations of j@�zk; ~ykÿ1�=@tj and

j@bint� ykÿ1; zk; ~ykÿ1�=@tj in each subdomain, so that, after a correct scaling has been done we have

a simple quantity which can be used to estimate tNL cheaply.
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